Micromachined microbial and photosynthetic fuel cells

نویسندگان

  • Mu Chiao
  • Kien B Lam
  • Liwei Lin
چکیده

This paper presents two types of fuel cells: a miniature microbial fuel cell (μMFC) and a miniature photosynthetic electrochemical cell (μPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm2. Two different micro-organisms are used as biocatalysts in the anode: (1) Saccharomyces cerevisiae (baker’s yeast) is used to catalyze glucose and (2) Phylum Cyanophyta (blue-green algae) is used to produce electrons by a photosynthetic reaction under light. In the dark, the μPEC continues to generate power using the glucose produced under light. In the cathode, potassium ferricyanide is used to accept electrons and electric power is produced by the overall redox reactions. The bio-electrical responses of μMFCs and μPECs are characterized with the open-circuit potential measured at an average value of 300–500 mV. Under a 10 ohm load, the power density is measured as 2.3 nW cm−2 and 0.04 nW cm−2 for μMFCs and μPECs, respectively. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light energy to bioelectricity: photosynthetic microbial fuel cells.

Here, we reviewed five different approaches that integrate photosynthesis with microbial fuel cells (MFCs)-photoMFCs. Until now, no conclusive report has been published that identifies direct electron transfer (DET) between a photosynthetic biocatalyst and the anode of a MFC. Therefore, most recent research has been performed to generate sufficient electric current from sunlight with either ele...

متن کامل

Comparison of Conduction Based and Mediator Based Models for Microbial Fuel Cells

Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and  microbial distribution and growth in batch flow mode. The outputs of the model and that of a mediator based mode...

متن کامل

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Microbial Fuel Cells, Features and Developments

Current reliance on fossil fuels is unsustainable due to pollution and finite supplies. Microbial cell factories serve as promising alternatives renewable energy resources. Microorganisms generate electricity in their metabolism; act as catalysts for converting the chemical energy into electricity. In Microbial Fuel Cell (MFC), electrons provided by microorganisms flow through an electrical ext...

متن کامل

Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria.

A sediment-type self-sustained phototrophic microbial fuel cell (MFC) was developed to generate electricity through the synergistic interaction between photosynthetic microorganisms and heterotrophic bacteria. Under illumination, the MFC continuously produced electricity without the external input of exogenous organics or nutrients. The current increased in the dark and decreased with the light...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006